
1 Parallel Semidefinite
Programming and
Combinatorial Optimization

STEVEN J. BENSON
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

1.1 INTRODUCTION

The use of semidefinite programming in combinatorial optimization contin-
ues to grow. This growth can be attributed to at least three factors: new
semidefinite relaxations that provide tractable bounds to hard combinato-
rial problems, algorithmic advances in the solution of semidefinite programs
(SDP), and the emergence of parallel computing.

Solution techniques for minimizing combinatorial problems often involve
approximating the convex hull of the solution set and establishing lower
bounds on the solution. Polyhedral approximations that use linear program-
ming (LP) methodologies have been successful for many combinatorial prob-
lems, but they have not been as successful for problems such as maximum cut
and maximum stable set. The semidefinite approximation for the stable set
problem was proposed by Grötschel, Lovász, and Shrijver [32] and further de-
veloped by Alizadeh [1], Polijak, Rendl, and Wolkowicz [48], and many other
authors. The Lovász number [43] is the solution of an SDP that provides
an upper bound to the maximum clique of a graph and a lower bound to
its chromatic number. Tractable bounds have also been provided for MAX-
CUT [30], graph bisection [47], MAX k-CUT [27, 24], graph coloring [33], and
the quadratic assignment problem [61]. Many more combinatorial problems
can be relaxed into a semidefinite program, and some of these relaxations offer
a projection back to a feasible solution that is guaranteed to be within a spec-
ified fraction of optimality. These combinatorial problems are NP hard in the
general case, so even approximate solutions are difficult to find. Most poly-
hedral relaxations do not offer a performance guarantee, but Geomans and
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Williamson [30], in a now classic result, also proved a polynomial-time ap-
proximation algorithm for the MAX-CUT problems with strong performance
guarantees. Other theoretical results on the effectiveness of semidefinite re-
laxation have been developed for MAX-SAT [2, 3], MAX-2-SAT [55], MAX-
(2+p)-SAT [25], and MAX k-CUT [27], and graph coloring [37]. See Laurent
and Rendl [42] for additional relationships between combinatorial optimiza-
tion and semidefinite programming.

In semidefinite programming, the variable is not a vector but a symmet-
ric matrix. Semidefinite problems minimize a linear function of the matrix
subject to linear constraints and the essential constraint that the matrix be
positive semidefinite. The last constraint is nonlinear and nonsmooth, but
convex, so semidefinite programs are convex optimization problems. Many
of the algorithmic ideas for optimizing over a polyhedral set have been ex-
tending to semidefinite optimization. Interior-point solvers, in particular,
have polynomial complexity and have been used to solve broad classes of
SDP [10, 17, 50, 58, 53]. Other methods, such as a generalized penalty
method [39], the low-rank factorization method [20], and a spectral bundle
method [34], have also proven effective for combinatorial problems. Surveys
by Todd [51] and Wolkowicz [56] present many examples of SDP and the
algorithms most frequently used for solving them.

Although interior-point methods have proven reliable on small and medium-
sized semidefinite programs, the computational and storage demands of these
methods can easily exhaust the resources of most computers and limit the
size of problems that can be solved. Although they are “polynomially” solv-
able, semidefinite programs with dimension above 10,000 have been extremely
hard to solve in practice. Graphs with more vertices and edges routinely
arise in VLSI design and other applications. Much of the research in this
field focuses on solving medium-scale problems more quickly and on solv-
ing large-scale problems by any means possible. High-performance computers
have become more common, and the additional memory and processing power
have alleviated some of the bottlenecks in large-scale semidefinite programs.
The MPI [31] standard for passing messages between processors has facili-
tated software development on these platforms. Parallel linear solvers [6, 15]
and nonlinear solvers [8, 36] have been developed using MPI. At least five
parallel solvers for semidefinite optimization have also been written for high-
performance architectures [7, 17, 59, 46, 54]. This chapter will use one of
those solvers, PDSDP, for its computations. All computations in this chapter
used multiple processors on a cluster of 360 2.4 GHz Pentium Xeon proces-
sors. Each processor had at least 1 GB of RAM, and they were connected by
a Myrinet 2000 network.
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1.2 MAXIMUM-CUT PROBLEMS

Let there be an undirected and connected graph G = (V,E), where V =
{1, . . . , n} and E ⊂ {(i, j) : 1 ≤ i < j ≤ n}. Let the edge weights wi,j = wj,i

be given such that wi,j = 0 for (i, j) #∈ E, and in particular, let wi,i = 0.
The maximum cut problem (MAX-CUT) is to find a partition (V1, V2) of V
so that the sum of the edge weights between V1 and V2 is maximized. It is
well known that MAX-CUT can be formulated as

maximize
1
2

∑

i<j

wi,j (1− vivj) subject to vi ∈ {−1, 1}, i = 1, . . . , n.

Defining

Ci,j =






− 1
4wi,j if i #= j

1
4

n∑

k=1

wi,k if i = j ,

one can rewrite as:

maximize
∑

i,j

Ci,jvivj subject to vivi = 1, i = 1, . . . , n.

If we introduce a matrix X from the set of symmetric n×n matrices, denoted
Sn, the combinatorial problem can be relaxed to

maximize
∑

i,j

Ci,jXi,j subject to Xi,i = 1, i = 1, . . . , n, X ' 0. (MC)

The notation X ' 0 means that X ∈ S and positive semidefinite. The formu-
lation (MC) is equivalent to MAX-CUT when X has the form Xi,j = vivj ,
but the semidefinite relaxation ignores this symmetric rank-one constraint on
the matrix. The objective function and equality constraints in (MC) are both
a linear function of X, and the feasible set is convex.

The work of Geomans and Williamson replaced the scalars vi with unit
vectors vi ∈ Rn and scalar products vivj with vector inner products vT

i vj .
A solution (v1, . . . , vn) consists of n points on the surface of the unit sphere
in Rn, each representing a node in the graph. After solving (MC), their
algorithm partitions the unit sphere into two half-spheres using a random
vector from the same sphere. The algorithm forms a partition consisting of
the vi in each half-sphere. Furthermore, Goemans and Williamson established
the celebrated result that if all the weights are nonnegative, the expected
value of such randomly generated cuts is at least 0.878 times the maximum
cut value. This result gives a strong performance guarantee not available from
polyhedral relaxations.

Similar problems impose additional constraints on the feasible set. For
example, vertices s and t may be forced in different subsets by relaxing the
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constraint that vs + vt = 0 into Xs,s + Xs,t + Xt,s + Xt,t = 0. The minimum
bisection problem partitions the vertices such the V1 and V2 have the same
cardinality. The semidefinite relaxation of the constraint that |

∑
vi| = 0 is∑

Xi,j = 0. Randomized procedures for the s− t cut problem and minimum
bisection problem have also been effective [11].

1.3 COLORS, CLIQUES, AND STABLE SETS

Given an undirected graph G = (V,E), a clique of graph G is a subset set of
vertices such that every pair of vertices is adjacent. We denote the cardinality
of the largest clique in a graph as C(G). A vertex coloring of a graph is
an assignment of colors to the vertices V such that no two adjacent vertices
receive the same color. A graph is k-colorable if it can be colored with k colors
or fewer. The smallest number of colors needed for this coloring is called the
chromatic number of G, which we denote as X (G).

Aside from its theoretical interest, the maximum clique problem arises in
applications in information retrieval, experimental design, signal transmission,
and computer vision [5]. Graph coloring arises when finite differences are
used to approximate sparse Hessian matrices, and well as in applications in
computer register allocation [19, 22, 21], timetable scheduling [13, 26, 57], and
electronic bandwidth allocation [28].

These classic problems in combinatorial optimization are well known to be
NP-hard [29]. The maximum clique problem and minimum coloring prob-
lem can be solved by using polynomial-time algorithms for special classes of
graphs such as perfect graphs and t-perfect graphs, circle graphs and their
complements, circular arc graphs and their complements, claw-free graphs,
and graphs with long odd cycles [44], but the existence of a polynomial time
algorithm for arbitrary graphs seems unlikely.

Since the coloring of every vertex in a clique must be different, the car-
dinality of any clique in G is a lower bound on the chromatic number of G.
The inequality C(G) ≤ X (G) is true for all graphs. When a graph (and every
node induced subgraph) has a chromatic number that equals the cardinality
of the largest clique, it is known as a perfect graph. For this special class of
graphs, the maximum clique and vertex coloring problems can be solved to
optimality by using a polynomial algorithm.

For a graph with n vertices, the Lovász number, ϑ(G), is the solution to
a semidefinite program whose variable X is a symmetric n × n matrix. The
SDP is

maximize
∑

i,j

Xi,j

(LOV )
subject to Xi,j = Xj,i = 0, ∀ (i, j) #∈ E

trace (X) = 1, X ' 0.
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This number satisfies the inequality C(G) ≤ ϑ(G) ≤ X (G) and provides a
bound to both the maximum clique problem and minimum graph coloring
problem.

Equivalent to the maximum clique problem are two other combinatorial
problems. A stable set of vertices (or vertex packing or independent set) is a
subset of V such that no two vertices are adjacent. A vertex cover is a subset
of vertices that are incident to each edge in the graph. With Ḡ denoted as
the graph complement of G, the following statements concerning any S ⊂ V
are known to be equivalent:

1. S is a clique of G,

2. S is a stable set of Ḡ,

3. V \ S is vertex cover of Ḡ.

Accordingly, the problems of finding a maximum stable set of Ḡ, a maximum
clique in G, and a minimum vertex cover in Ḡ are equivalent. The maximum
stable set problem (MSS) asks for the stable set with the maximum cardinality.
Bomze et. al. [16] provide a history of results relating to this problem.

Much like the formulation of Kleinberg and Goemans [38] the SDP relax-
ation of the MSS problem will assign each vertex an integer value of ±1. One
of the two sets will be a stable set. Given a graph G with n vertices, one for-
mulation adds an artificial vertex vn+1 with no edges connecting it to other
vertices. Since the artificial vertex is obviously a member of the maximal
stable set of the new graph, its sign will used to identify the stable set and
enforce the constraints of the problem. The MSS problem can be stated as:

maximize
1
2

n∑

i=1

(
v2

i + vivn+1

)

(MSS)
subject to |vi + vj + vn+1| = 1 ∀ (i, j) ∈ E,

vi ∈ {−1, 1} i = 1, . . . , n + 1,

The semidefinite relaxation of MSS introduces a symmetric matrix X ∈ Sn+1

and sets Xi,j = vivj . Since |vi+vj +vn+1| = (vi+vj +vn+1)2, the semidefinite
relaxation is

maximize
1
2

n∑

i=1

Xi,i + Xi,n+1

subject to
∑

i,j∈{s,t,n+1}

Xi,j = 1 ∀ (s, t) ∈ E

Xi,i = 1 i = 1, . . . , n + 1, X ' 0.

Clearly, there are nine variables in each equation corresponding to an edge,
and one variable in the other equations. Imposing the additional constraint
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that the matrix X be a rank-one matrix of the form X = vvT would make it
equivalent to (MSS). Relaxing this constraint to include all symmetric positive
semidefinite matrices makes the feasible region convex, and the solution to this
problem provides an upper bound to the integer program (MSS).

In order to favor the inclusion of selected vertices into the stable set, the
weighted maximal stable set problem has a similar formulation. Given weights
wi on the vertices, this problem seeks to maximize

1
2

n∑

i=1

wi

(
v2

i + vivn+1

)

subject to the same constraints as (MSS). The problems can also be addressed
by using the semidefinite relaxation. In polyhedral relaxations of the maximal
stable set problem, utilizing larger cliques is crucial for a tight approximation
to the convex hull of the integer program. These cliques can also improve the
semidefinite relaxation. Given cliques C1, . . . , Cd, such that Ck has nk vertices,
stable sets v ∈ {−1, 1}n must satisfy

|(nk − 1)vn+1 +
∑

vi∈Ck

vi| = 1

for k = 1, . . . , d. This formulation has a semidefinite relaxation that more
closely approximates the convex hull of the integer program.

The semidefinite relaxation of the graph coloring problem is similar to that
of the maximum cut problem. Instead of assigning colors or integers to the
vertices of the graph, a unit vector vi ∈ Rn is assigned to the each of the n
vertices i in V . To capture the property of coloring, the vectors of adjacent
vertices should differ in a natural way. From the definition in [37], the vector
k- coloring of G is an assignment of unit vectors vi ∈ Rn to each vertex
i in V such that for any two adjacent vertices i and j, the dot product of
the vectors satisfies the inequality vT

i vj ≤ − 1
k−1 . In other words, the angle

between the vectors of adjacent vertices must be sufficiently large. Define the
matrix V such that column i is given by vi, and let X = V T V . The matrix
X is positive semidefinite and satisfies the inequalities Xij = Xji ≤ − 1

k−1 for
each pair of adjacent edges (i, j). Obviously, any matrix is n-colorable, so the
graph coloring problem can be posed as

Minimize rank(X)
Subject to Xij + Xj,i ≤ − 2

n−1 for (i, j) ∈ E (COL)
Xi,i = 1 i = 1, . . . , n.

A semidefinite relaxation of the graph k-coloring problem can be written by
replacing the n with a k. Ignoring the objective function, the problem is now
a semidefinite program that seeks to find a feasible point.
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Fig. 1.1 Sample graph with 12 vertices and 23 edges.

Figure 1.1 shows a small graph to illustrate these combinatorial problems.
In this graph, {A,C, F, H, I, K} and {B,D,F,G, J, L} form a maximum cut;
{B,C,D,E, F} is the maximum clique; {A,C, I,H,L} is the maximum stable
set; and {B,H, I},{C,G, J},{D,K},{E,L},{A,F} form an optimal coloring.

1.4 AN INTERIOR-POINT ALGORITHM

The inner product in the space Sn is denoted by •, which is defined as U •V =∑n
i,j=1 Ui,jVi,j . Given input data C,A1, . . . , Am ∈ Sn and scalars b1, . . . bm,

we state the pair of semidefinite programs

(P ) inf C •X subject to Ai •X = bi, i = 1, . . . ,m, X ' 0,

(D) sup
m∑

i=1

biyi subject to
m∑

i=1

Aiyi + S = C, S ' 0.

In this form, (P) is referred as the primal problem whereas (D) is referred to
as the dual problem. Variables X and (y, S) are called feasible solutions to (P)
and (D) if they satisfy the constraints in their respective problems. Interior
feasible points are feasible solutions such that X ) 0 and S ) 0. The notation
X ) 0 for X ∈ Sn means that X is positive definite. The interior feasible sets
of (P) and (D) will be denoted by F0(P ) and F0(D), respectively. A well-
known duality theorem states that provided there is a strictly interior point
to (P) and (D), there exist primal and dual optimal solutions, (X∗, y∗, S∗)
and C •X∗ = bT y∗.

This discussion also assumes that the Ais are linearly independent, there
exists X ∈ F0(P ), and (y, S) ∈ F0(D). Optimal solutions X∗ and (y∗, S∗) are
also characterized by the equivalent conditions that the duality gap X∗ • S∗

is zero and the product X∗S∗ is zero. Moreover, for every ν > 0, there
exists a unique primal-dual feasible solution (Xν , yν , Sν) that satisfies the
perturbed optimality equation XνSν = νI. The set of all solutions C ≡
{(Xν , yν , Sν) : ν > 0} is known as the central path, and C serves as the ba-
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sis for path-following algorithms that solve (P) and (D). These algorithms
construct a sequence {(X, y, S)} ⊂ F0(P )× F0(D) in a neighborhood of the
central path such that the duality gap X • S goes to zero. A scaled mea-
sure of the duality gap that proves useful in the presentation and analysis
of path-following algorithms is µ(X, S) = X • S/n for all (X, S) ∈ Sn × Sn.
Note that for X ) 0, S ) 0, we have µ(X, S) > 0 unless XS = 0. Moreover,
µ(Xν , Sν) = ν for all points (Xν , yν , Sν) on the central path.

Several polynomial algorithms can solve a pair of semidefinite programs.
Helmberg-Rendl-Vanderbei-Wolkowicz/Kojima-Shida-Hara/Monteiro, Nesterov-
Todd (see Monteiro [45] and references therein). All these algorithms possess
O(
√

n log(1/ε)) iteration complexity to yield accuracy ε. This section sum-
marizes the dual-scaling algorithm for solving (P) and (D). For simplicity, the
discussion assumes that the matrix variables are a single semidefinite variable,
but the extension of the algorithm to direct products of semidefinite matrices
is relatively simple.

Let the symbol A denote the linear map A : V → Rm defined by (AX)i =
〈Ai, X〉; its adjoint AT : Rm → V is defined by A∗y =

∑m
i=1 yiAi. The dual-

scaling algorithm applies Newton’s method to AX = b, AT y + S = C, and
X = νS−1 to generate

A(X + ∆X) = b, (1.1)
AT (∆y) + ∆S = 0, (1.2)

νS−1∆SS−1 + ∆X = νS−1 −X. (1.3)

Equations (1.1 – 1.3) are referred to as the Newton equations; their Schur
complement is

ν




A1 • S−1A1S−1 · · · A1 • S−1AmS−1

...
. . .

...
Am • S−1A1S−1 · · · Am • S−1AmS−1



 ∆y = b− νAS−1. (1.4)

The left-hand side of this linear system is positive definite when S ) 0. In this
chapter, it will sometimes be referred to as M . DSDP computes ∆′y := M−1b
and ∆′′y := M−1AS−1. For any ν,

∆y :=
1
ν

∆′y −∆′′y

solves (1.4).
Using (1.2), (1.3), and ∆y, we get

X(ν) := ν
(
S−1 + S−1(AT ∆y)S−1

)
,

which satisfies AX(ν) = b. Notice that X(ν) ) 0 if and only if

C −AT (y −∆y) ) 0.
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If X(ν) ) 0, a new upper bound

z̄ := C •X(ν) = bT y + X(ν) • S = bT y + ν
(
∆yTAS−1 + n

)

can be obtained without explicitly computing X(ν). The dual-scaling algo-
rithm does not require X(ν) to compute the step direction defined by (1.4);
indeed, the solvers will not compute X(ν) unless specifically requested. This
feature characterizes the algorithm and its performance.

For ρ > n +
√

n, either (y, S) or X reduces the dual potential function

ψ(y) := ρ log(z̄ − bT y)− ln detS

enough at each iteration to achieve linear convergence. More details about
the algorithm and its implementation can be found in [10].

1: Choose an upper bound z̄ and y such that S ← C −AT y ) 0.
2: for k ← 0, . . . , convergence do
3: Select ν.
4: Compute M and AS−1.
5: Solve M∆′y = b, M∆′′y = AS−1.
6: if C −AT (y −∆y) ) 0 then
7: z̄ ← bT y + ν

(
∆yTAS−1 + n

)
.

8: y ← y, ∆y ← ∆y, µ ← ν.
9: end if

10: Find αd to reduce ψ, and set y ← y + αd∆y, S ← C −AT y.
11: end for
12: Optional: Compute X using y, ∆y, µ.

1.5 PARALLEL COMPUTING

Even relatively small graphs can lead to large SDP that are difficult to solve.
The dense matrix M contains a row and column for each constraint. Although
interior-point methods for semidefinite programming are computationally in-
tensive, the high memory requirements are usually the bottleneck that restrict
the size of problems that can be solved. A graph with n vertices, for instance,
has a MAX-CUT relaxation such that the matrix M has n rows and columns.
For the Lovász problem, the solver constructs M with dimension of |Ē|+ 1,
where |Ē| is the number of edges in the complement of the graph, and for the
MSS problem, M ∈ S|E|+n. Graphs with only few hundred vertices can easily
contain thousands of edges. A dense matrix with 10, 000 rows and columns
requires about 800 MB RAM, which can easily exhaust the resources of most
serial architectures. The total memory requirements of the solver may be
much greater.
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The most computationally expensive tasks in each iteration of the dual-
scaling algorithm are usually the construction of the linear system (1.4) and
the factorization of M . As documented in [12], the worst-case computational
complexity of computing M is O(m2n2 + mn3), and factoring it is O(m3).
Sparsity in the data can reduce the cost of the former task, but its complexity
remains much greater than interior-point iterations for linear or second-order
cone programming.

In order to reduce the time needed to solve these applications and to sat-
isfy the memory requirements of interior-point methods, parallel implemen-
tations distribute (1.4) over multiple processors and compute on it in par-
allel. Either shared-memory or distributed-memory paradigms can be used.
Borchers [18] used Open MP directives and shared-memory implementations
of BLAS and LAPACK to parallelize his primal-dual interior-point solver.
Computational studies with sixteen processors showed overall parallel effi-
ciency on large problems between 20% and 100%. The interior-point solvers of
Yamashita et. al. [59] and PDSDP [7] assumed a distributed-memory paradigm
and used MPI to pass messages between processors. Both solvers used the
parallel Cholesky factorization in ScaLAPACK [15]. All these solvers gave
each processor local access to the data Ai and C. Furthermore, all three
solvers explicitly assigned to each processor a mutually exclusive set of rows
in M . As illustrated in Figure 1.2, the solvers explicitly manage parallelism
in M and have local access to the data matrices. In the distributed-memory
solvers, each processor also has a local copy of the matrices X and S.

Fig. 1.2 Distribution of data structures and computations over multiple processors.

The DSDP [10] software package served as the basis for a parallel imple-
mentation of the dual-scaling algorithm. Since each element of M has the
form Mi,j = Ai • (S−1AjS−1), each element in row (or column) j requires
computing the matrix S−1AjS−1. The cost of this product usually exceeds
the cost of its inner product with the data matrices Ai. In order to reduce
duplication of work, it is efficient for one processor to compute all elements
of (1.4) in the same row. Inserting a row of elements into a parallel ma-
trix structure may require sending some elements to other processors. The
overhead of the message, however, is small compared to the upper limit of
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O(n3 + n2m) floating-point operations (flops) to compute the elements of the
row. Although an interior-point iteration for semidefinite programming is
more computationally intensive that a similar iteration for linear or second-
order conic programming, the additional complexity allows for better parallel
scalability because the ratio of floating-point operations to interprocessor mes-
sages is relatively high.

Load balancing among processors is trivial for most combinatorial applica-
tions. Since the data constraints in (MC) all have a single nonzero, the rows
of M should be divided as evenly as possible over the processors. For (MSS)
and (COL), there are two types of constraint matrices; in these examples, the
rows corresponding to each type constraints are divided as evenly as possible.
Only in (LOV) is there one constraint, (trace (X) = 1), whose structure is
significantly different from the others. In this case, the identity matrix has
more nonzeros and higher rank than do the other constraint matrices.

After factoring M and solving (1.4), PDSDP broadcasts the step direction
∆y from a parallel vector structure to a serial vector structure on each pro-
cessor. The serial vector structure contains all elements in ∆y, and PDSDP
uses it to calculate a suitable step-length, update the dual matrix S, factor
it, and compute an appropriate barrier parameter ν for the next iteration.

(a) Time (b) Percentage

Fig. 1.3 Parallel scalability of computing M, factoring it, and other operations.

Most analysis of the scalability of interior-point algorithms for semidefinite
programming has concerned three mutually exclusive parts of the algorithms:
computing the elements of the Newton equations (Elements), factoring the
Schur complement matrix (Factor), and other operations that consist primar-
ily of computing X and factoring S (S). Using a Lovasz problem for a graph
with 100 vertices and 990 edges as an example, Figure 1.3 shows the relative
amount of time spent in each part of the algorithm for five groups of pro-
cessors. Normalizing times such that one processor required one unit of time
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to solve the problem, Figure 1.3(a) shows the time spent in each part of the
algorithm for each group of processors. Figure 1.3(b) shows these times of the
three parts as a percentage of the entire solution time. In this case, a single
processor spent about 12% of its time computing M and 75% of the time
factoring it. Using sixteen processors, about 8% of the time was spent com-
puting the matrix and 50% of the time was spent factoring it. The remaining
operations are mostly serial, so those times did not change significantly as
the number of processors increased. On a single processor these operations
amounted to about 10% of the time, and on sixteen processors they amounted
to about 40% of the time.

A set of computational tests shown in Table 1.1 measure the overall parallel
scalability and efficiency of the solver. on three instances of the semidefinite
relaxations of (MC), (LOV), (MSS), and (COL). The graphs were chosen such
that the SDP’s could be solved on on single a single processor with 1 GB RAM
and still scale well to additional processors. For the larger instances of (LOV),
(MSS), and (COL), the overall parallel efficiency on sixteen processors was
about 80%. The time spent factoring M dominated the overall solution time,
and the scalability of ScaLAPACK heavily influenced the scalability of the
entire solver. The overall efficiency on the maximum-cut relaxation was less
because the semidefinite blocks have dimension n = m, and the factoriza-
tion of S in serial uses a significant percentage of the solution time. Figure
1.4 shows the overall scalability of PDSDP on four instances of semidefinite
programs.

Table 1.1 Scalability of PDSDP on semidefinite relaxations.

Processors and Seconds
Name |V | |E| n m 1 2 4 8 16

MC-1 1000 5909 1000 1000 46 30 16 11 8
MC-2 5000 14997 5000 5000 6977 4108 2592 2274 1460
MC-3 7000 17148 7000 7000 16030 10590 6392 4721 3928

LOV-1 100 2970 100 1981 43 23 13 8 4
LOV-2 150 3352 150 7824 3394 1747 995 535 271
LOV-3 150 7822 150 3354 196 104 49 34 17

MSS-1 100 2970 100 2081 261 141 75 55 31
MSS-2 150 3352 150 7974 22628 11630 6616 3916 1781
MSS-3 150 7822 150 3504 1671 875 494 307 159

COL-1 100 2970 100 3070 518 276 124 99 49
COL-2 150 3352 150 3502 770 407 186 157 72
COL-3 150 7822 150 7972 9445 4866 2796 1875 875
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(a) Times. (b) Efficiency.

Fig. 1.4 Overall time and parallel efficiency on four SDP.

Distributing M across processors allows larger problems to be solved, but
even this technique may not be sufficient for problems with hundreds of thou-
sands of constraints. One idea has been to use the conjugate gradient method
to solve (1.4). Since iterative linear solvers require only the product of the ma-
trix with a vector, the entire matrix M does not have to be stored. Choi and
Ye have used this approach on maximum cut problems [23] and Toh and Ko-
jima [52] have explored similar ideas for primal-dual methods in conjunction
with a reduced space preconditioner. Another approach for extraordinarily
large problems is to use methods such as low-rank factorizations or the parallel
bundle method [54].

1.6 FEASIBLE SOLUTIONS

In their randomized algorithm, Goemans and Williamson defined V ∈ Rn×n

such that X = V V T and selected a vector u ∈ Rn from a uniform distribution
of unit vectors. Then they let

v̂ = V u

and defined
vi = sign(v̂i), i = 1, . . . , n.

They proved that if all the edge weights wi,j ≥ 0, the cut generated by the
randomized algorithm has an expected value greater than 0.878 of optimality.

For another measure of optimality, let q(v) :=
∑

i,j Ci,jvivj , and let q and q
be the upper and lower bound of q(v). Furthermore, let E[·] be the expectation
operator. Nesterov [47] proved that for arbitrary adjacency matrices, the
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randomized technique above gives an approximate solution v such that

E

[
q(v)− q

q − q

]
≥ 4

7
.

As the number of applications of this randomized algorithm increases to in-
finity, the probability of generating a solution whose objective value equals or
exceeds the expectation increases to one. In practice, this algorithm is very
quick and can be repeated many times.

Table 1.2 Approximate Maximum Cuts from the Semidefinite Relaxation.

Objective Values Seconds
Name n SDP Rand Ratio |P | SDP Rand

MC1a 1000 29,428.5 28,158 0.957 4 66 11
MC1b 1000 4,737.8 3,419 0.722 4 70 11
MC3a 3000 30,226.9 28,008 0.927 4 1,590 55
MC3b 3000 7,798.9 5,459 0.700 4 1,396 55
MC5a 5000 43,081.4 39,390 0.914 4 6,268 152
MC5b 5000 11,788.5 8,195 0.695 4 6,149 152
MC7a 7000 150,646.2 141,547 0.940 4 24,089 527
MC7b 7000 28,178.5 19,010 0.675 4 25,774 533

For eight different graphs, we computed the semidefinite relaxation and
applied the randomized approximation procedure. For each graph, Table 1.2
shows the objective value of the semidefinite relaxation and best cut, the
number of processors used to solve the problem, and the times needed to
solve the SDP and apply the randomized algorithm. The processors applied
the randomized procedure concurrently until the procedure had been applied
1000 times. Graphs named with an “a” have edge weights of 1 and graphs
named with a “b” have edge weights of ±1 in roughly equal proportion. As
Table 1.2 shows, the quality of the cuts is high, especially when the edges
have positive weights.

A randomized algorithm for stable sets [9] begins in a similar way: given a
solution X∗ to (MSS), find a V ∈ R(n+1)×(n+1) such that X∗ = V T V , select a
unit vector u ∈ Rn+1 from the unit sphere, and let v = sign(V T u). For each
(i, j) ∈ E, if |vi +vj +vn+1| #= 1, change the sign of either vi or vj . The stable
set will be the set of vertices with the same sign as vn. For arbitrary graphs,
the constraints corresponding to the edges of the graph will be satisfied with
a frequency greater than 91% [14].

From the relaxation of the graph coloring problem, a solution X∗ with rank
less than or equal to k identifies a legal k-coloring. More generally, Karger,
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Motwani, and Sudan [37] propose a randomized algorithm that produces a k-
semicoloring, an assignment of colors with relatively few adjacent vertices with
the same color. We use a heuristic procedure for to obtain a legal coloring,
albeit with more than k colors if necessary. For k = 1, . . . , n, do the following:
first let Uk be the uncolored vertices. If Uk is empty, terminate the algorithm.
Sort the vertices of Uk in decreasing order of degree in G[Uk], the graph
induced by the uncolored vertices, and let i be the vertex with highest degree.
Then build a vertex set W k by examining vertices j ∈ Uk in the decreasing
order of Xij . Add j to W k if it is not adjacent to any of the vertices in W k.
Finally, assign the vertices in W k color k. This algorithm is an extension
of the popular algorithm proposed by Powell and Toint [49] to semidefinite
programming.

The second set of tests computed the Lovász number and semidefinite re-
laxations of the minimum color relaxation for nine randomly generated un-
weighted graphs. The semidefinite relaxation of the maximum stable set prob-
lems on the complement of these graphs was also computed. The larger graphs
created SDP’s that were too large for a single processor. From the relaxations,
feasible solutions were found by using the heuristic methods mentioned above.
Like the randomized algorithm for the MAX-CUT relaxation, the processors
applied the algorithm concurrently. Table 1.3 shows the results; recall that
the clique size is the size of the stable set on the complement graph. In many
of these problems, the bound provided by the semidefinite relaxation was sig-
nificantly better than the bound provide the feasible solutions of the other
combinatorial problem.

Table 1.3 Approximate Maximum-Clique and Minimum Coloring from
Semidefinite Relaxations.

Graph Objective Values
Name |V | |E| |Ē| Clique ϑ(G) Color |P |

G1 100 1980 2970 9 13.1 22 16
G2 100 990 3960 17 22.1 32 16
G3 150 7823 3352 4 7.75 17 16
G4 150 5588 5587 6 12.6 26 16
G5 150 3353 7822 11 20.5 36 16
G6 200 5970 13930 5 8.8 21 32
G7 200 9950 9950 7 14.5 31 32
G8 200 13930 5970 13 23.9 46 32
G9 300 17940 26910 7 13.7 35 40

The use of cutting planes and lift-and-project methods can strengthen the
semidefinite relaxations and generate optimal solutions. Yilderim [60] offers
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techniques specific to the stable set problem and and Anjos [4] applies lift-
ing procedures for the semidefinite relaxations of the maximum-cut problem.
More generally, the construction of Lasserre [40, 41] and Henrion [35] uses
a sequence of moment matrices and nonnegative polynomials. The work of
Laurent and Rendl [42] summarizes many of these techniques.

1.7 CONCLUSIONS

Semidefinite programming provides tractable bounds and approximate solu-
tions for several hard combinatorial optimization problems. Robust solvers
have been developed that target these semidefinite programs, and some of
these solvers have been implemented for parallel architectures. For interior-
point methods, computing and solving the Newton equations in parallel in-
creases the size of problems that we can solve and reduces the time needed to
compute these solutions. Numerical results show that on problems of sufficient
size and structure, interior-point methods exhibits good scalability on parallel
architectures. The parallel version of DSDP was written to demonstrate the
scalability of interior-point methods for semidefinite programming and pro-
vide computational scientists with a robust, efficient, and well-documented
solver for their applications. The software is freely available from the Mathe-
matics and Computer Science Division at Argonne National Laboratory, and
we encourage its use with the terms of the license.
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